
53

Chapter 3

3.Filesystem Concepts

This chapter explains some important concepts about hard disk filesystems, the structure
by which files and directories are organized in the IRIX system. The chapter describes the
primary types of IRIX filesystems, the older Extent File System (EFS) and the newer XFS
filesystem, and other disk filesystems. It explains concepts that are important to
filesystem administration such as IRIX directory organization, filesystem features,
filesystem types, creating filesystems, mounting and unmounting filesystems, and
checking filesystems for consistency.

The major sections in this chapter are:

• “IRIX Directory Organization” on page 54

• “General Filesystem Concepts” on page 56

• “EFS Filesystems” on page 61

• “XFS Filesystems” on page 63

• “Network File Systems (NFS)” on page 64

• “Cache File Systems (CacheFS)” on page 65

• “/proc Filesystem” on page 65

• “Filesystem Creation” on page 66

• “Filesystem Mounting and Unmounting” on page 66

• “Filesystem Checking” on page 68

• “Filesystem Reorganization” on page 69

• “Filesystem Administration From the Miniroot” on page 69

• “How to Add Filesystem Space” on page 70

• “Disk Quotas” on page 71

• “Filesystem Corruption” on page 72

54

Chapter 3: Filesystem Concepts

Even if you are familiar with the basic concepts of UNIX filesystems, you should read
through the following sections. The IRIX EFS and XFS filesystems are slightly different
internally from other UNIX filesystems and have slightly different administration
commands and procedures.

Filesystem administration procedures are described in Chapter 4, “Creating and
Growing Filesystems,” and Chapter 5, “Maintaining Filesystems.”

For information about floppy and CD-ROM filesystems, see the guide IRIX Admin:
Peripheral Devices.

IRIX Directory Organization

Every IRIX system disk contains some standard directories. These directories contain
operating system files organized by function. This organization is not entirely logical; it
has evolved over time and has its roots in several versions of UNIX. Table 3-1 lists the
standard directories that most systems have. It also lists alternate names for those
directories in some cases. The alternate names are usually an older pathname for the
directory and are provided (as symbolic links) to ease the transition from old pathnames
to new pathnames as the IRIX directory organization evolves.

Table 3-1 Standard Directories and Their Contents

Directory Alternate Name Contents

/ The root directory, contains the IRIX kernel (/unix)

/dev Device files for terminals, disks, tape drives,
CD-ROM drives, and so on

/etc Critical system configuration files and
maintenance commands

/etc/config /var/config,
/usr/var/config

System configuration files

/lib Critical compiler binaries and libraries

/lib32 Critical compiler binaries and libraries

/lib64 Critical compiler binaries and libraries for 64-bit
systems (IP19, IP21, and IP26)

IRIX Directory Organization

55

/lost+found Holding area for files recovered by the fsck
command

/proc /debug Process (debug) filesystem

/sbin Commands needed for minimal system
operability

/stand Standalone utilities (fx, ide, sash)

/tmp Temporary files

/tmp_mnt Mount point for automounted filesystems

/usr On some systems, a filesystem mount point

/usr/bin /bin Commands

/usr/bsd Commands

/usr/demos Demo programs

/usr/etc Critical system configuration files and
maintenance commands

/usr/include C header files

/usr/lib Libraries and support files

/usr/lib32 Libraries and support files

/usr/lib64 Libraries and support files for 64-bit systems (IP19,
IP21, and IP26)

/usr/local Non-Silicon Graphics system commands and files

/usr/lost+found Holding area for files recovered by the fsck
command

/usr/people Home directories

/usr/relnotes Release Notes

/usr/sbin Commands

/usr/share Shared data files for various applications

Table 3-1 (continued) Standard Directories and Their Contents

Directory Alternate Name Contents

56

Chapter 3: Filesystem Concepts

General Filesystem Concepts

A filesystem is a data structure that organizes files and directories on a disk partition so
that they can be easily retrieved. Only one filesystem can reside on a disk partition.

A file is a one-dimensional array of bytes with no other structure implied. Information
about each file is stored in structures called inodes (inodes are described in the next
section “Inodes”). Files cannot span filesystems.

A directory is a container that stores files and other directories. It is merely another type
of file that the user is permitted to use, but not allowed to write; the operating system
itself retains the responsibility for writing directories. Directories cannot span
filesystems. The combination of directories and files make up a filesystem.

/usr/share/Insight InSight books

/usr/share/catman Reference pages (man pages)

/usr/var Present if / and /usr are separate filesystems

/var System files likely to be customized or
machine-specific

/var/X11 X11 configuration files

/var/adm /usr/adm System log files

/var/inst Software installation history

/var/mail /usr/mail Incoming mail

/var/nodelock NetLS nodelock license file

/var/preserve /usr/preserve Temporary editor files

/var/spool /usr/spool Printer support files

/var/tmp /usr/tmp Temporary files

/var/yp NIS commands

Table 3-1 (continued) Standard Directories and Their Contents

Directory Alternate Name Contents

General Filesystem Concepts

57

The starting point of any filesystem is an unnamed directory that serves as the root for
that particular filesystem. In the IRIX operating system there is always one filesystem
that is itself referred to by that name, the Root filesystem. Traditionally, the root directory
of the Root filesystem is represented by a single slash (/). Filesystems are attached to the
directory hierarchy by the mount command. The result is the IRIX directory structure
shown in Figure 3-1.

Figure 3-1 The IRIX Filesystem

You can join two or more disk partitions to create a logical volume. The logical volume can
be treated as if it were a single disk partition, so a filesystem can reside on a logical
volume and hence is the only way for a single filesystem to span more than one disk.
Logical volumes are covered beginning in Chapter 6, “Logical Volume Concepts.”

The following subsections describe key components of filesystems.

/

/bin /etc /usr /var /d2

/proj1 /proj2

Partition
0

Partition
7

Partition
7

/d3

/proj3 /proj4

Disk 1 Disk 2 Disk 3

58

Chapter 3: Filesystem Concepts

Inodes

Information about each file is stored in a structure called an inode. The word inode is an
abbreviation of the term index node. An inode is a data structure that stores all
information about a file except its name, which is stored in the directory. Each inode has
an identifying inode number, which is unique across the filesystem that includes the file.

An inode contains this information:

• the type of the file (see the next section, “Types of Files,” for more information)

• the access mode of the file; the mode defines the access permissions read, write, and
execute and may also contain security labels and access control lists

• the number of hard links to the file (see the section “Hard Links and Symbolic
Links” for more information)

• who owns the file (the owner’s user-ID number) and the group to which the file
belongs (the group-ID number)

• the size of the file in bytes

• the date and time the file was last accessed, and last modified

• information for finding the file’s data within the disk partition or logical volume

• the pathname of symbolic links (when they fit and on XFS filesystems only)

You can use the ls command with various options to display the information stored in
inodes. For example, the command ls -l displays all but the last two items in the list above
in the order listed (the date shown is the last modified time).

Inodes do not contain the name of the file or its directory.

General Filesystem Concepts

59

Types of Files

Filesystems can contain the types of files listed Table 3-2. The type of a file is indicated by
the first character in the line of ls -l output for the file.

Hard Links and Symbolic Links

As discussed in the section “Inodes” in this chapter, information about each file, except
for the name and directory of the file, is stored in an inode for the file. The name of the
file is stored in the file’s directory and a link to the file is created by associating the
filename with an inode number. This type of link is called a hard link. Although every file
is a hard link, the term is usually used only when two or more filenames are associated
with the same inode number. Because inode numbers are unique only within a
filesystem, hard links cannot be created across filesystem boundaries.

Table 3-2 Types of Files

Type of File Character Description

Regular files – Regular files are one-dimensional arrays of bytes.

Directories d Directories are containers for files and other directories.

Symbolic links l Symbolic links are files that contain the name of another
file or a directory.

Character devices c Character devices enable communication between
hardware and IRIX; data is accessed on a character by
character basis.

Block devices b Block devices enable communication between hardware
and IRIX; data is accessed in blocks from a system buffer
cache.

Named pipes (also
known as FIFOs)

p Named pipes allow communication between two
unrelated processes running on the same host. They are
created with the mknod command (see the section
“Creating Device Files With mknod” in Chapter 2 for
more information on mknod).

UNIX domain sockets s UNIX domain sockets are connections between
processes that allow them to communicate, possibly
over a network.

60

Chapter 3: Filesystem Concepts

The second and later hard links to a file are created with the ln command, without the -s
option. For example, say the current directory contains a file called origfile. To create a
hard link called linkfile to the file origfile, give this command:

% ln origfile linkfile

The output of ls -l for origfile and linkfile shows identical sizes and last modification times:

% ls -l origfile linkfile

-rw-rw-r-- 2 joyce user 4 Apr 5 11:15 origfile

-rw-rw-r-- 2 joyce user 4 Apr 5 11:15 linkfile

Because origfile and linkfile are simply two names for the same file, changes in the contents
of the file are visible when using either filename. Removing one of the links has no effect
on the other. The file is not removed until there are no links to it (the number of links to
the file, the link count, is stored in the file’s inode).

Another type of link is the symbolic link. This type of link is actually a file (see Table 3-2).
The file contains a text string, which is the pathname of another file or directory. Because
a symbolic link is a file, it has its own owners and permissions. The file or directory it
points to can be in another filesystem. If the file or directory that a symbolic link points
to is removed, it is no longer available and the symbolic link becomes useless until the
target is recreated (it is called a dangling symbolic link).

Symbolic links are created with the ln command with the -s option. For example, to create
a symbolic link called linkdir to the directory origdir, give this command:

% ln -s origdir linkdir

The output of ls -ld for the symbolic link is shown below. Notice that the permissions and
other information don’t match. The listing for linkdir shows that it is a symbolic link to
origdir.

% ls -ld linkdir origdir

drwxrwxrwt 13 sys sys 2048 Apr 5 11:37 origdir

lrwxrwxr-x 1 joyce user 8 Apr 5 11:52 linkdir -> origdir

When you use “..” in pathnames that involve symbolic links, be aware that ” ..” refers to
the parent directory of the true file or directory, not the parent of the directory that
contains the symbolic link.

For more information about hard and symbolic links, see the ln(1) reference page and
experiment with creating and removing hard and symbolic links.

EFS Filesystems

61

Filesystem Names

Filesystems don’t have names per se; they are identified by their location on a disk or
their position in the directory structure in these ways:

• by the block and character device file names of the disk partition or logical volume
that contains the filesystem (see the section “Block and Character Devices” in
Chapter 1)

• by a mnemonic name for the disk partition or logical volume that contains the
filesystem (see the section “Creating Mnemonic Names for Device Files With ln” in
Chapter 2)

• by the mount point for the filesystem (see the section “Filesystem Mounting and
Unmounting” in this chapter)

The filesystem identifier from the list above that you use with commands that administer
filesystems (such as mkfs, mount, umount, and fsck) depends upon the command. See the
reference page for the command you want to use or examples in this guide to determine
which filesystem name to use.

EFS Filesystems

The EFS filesystem is the original IRIX filesystem. It contains an enhancement to the
standard UNIX filesystem called extents (defined below), and thus is called the Extent
File System (EFS). The maximum size of an EFS filesystem is about 8 GB. It uses a
filesystem block size of 512 bytes and allows a maximum file size of 2 GB minus 1 byte.

Advanced features of EFS are that it keeps multiple inode tables in close proximity to
data blocks rather than a single inode table, and it uses a bitmap to keep track of free
blocks instead of a list of free blocks.

Inodes are created when an EFS filesystem is created, not when files are created. When a
file is created, an inode is allocated to that file. Thus, the maximum number of files in a
filesystem is limited by the number of inodes in that filesystem. By default, the number
of inodes created is a function of the size of the partition or logical volume. Typically one
inode is created for every 4K bytes in the partition or logical volume. You can specify the
number of inodes with the -n option to the filesystem creation command, mkfs. Inodes
use disk space, so there is a tradeoff between the number of inodes and the amount of
disk space available for files.

62

Chapter 3: Filesystem Concepts

The first block of an EFS filesystem is not used. Information about the filesystem is stored
in the second block of the filesystem (block 1), called the superblock. This information
includes:

• the size of the filesystem, in both physical and logical blocks

• the read-only flag; if set, the filesystem is read only

• the superblock-modified flag; if set, the superblock has been modified

• the date and time of the last update

• the total number of index nodes (inodes) allocated

• the total number of inodes free

• the total number of free blocks

• the starting block number of the free block bitmap

After the superblock bitmap is a series of cylinder groups. A cylinder group is a group of
1 to 32 contiguous disk cylinders. Each cylinder group contains both inodes and data
blocks. Each contiguous group of data blocks that make up a file is called an extent. There
are 12 extent addresses in an inode. Extents are of variable length, anywhere from 1 to
148 contiguous blocks.

An inode contains addresses for 12 extents, which can hold a combined 1536 blocks, or
786,432 bytes. If a file is large enough that it cannot fit in the 12 extents, each extent is then
loaded with the address of up to 148 indirect extents. The indirect extents then contain the
actual data that makes up the file. Because EFS uses indirect extents, you can create files
up to 2 GB, assuming you have that much disk space available in your filesystem.

The last block of the filesystem is a duplicate of the filesystem superblock. This is a safety
precaution that provides a backup of the critical information stored in the superblock.

EFS filesystems can become fragmented over time. Fragmented filesystems have small
contiguous blocks of free space and files with poor layouts of the file extents. The fsr
command reorganizes filesystems to improve file extent layout and compact the
filesystem free space. By default, fsr is run once a week automatically from crontab.

XFS Filesystems

63

XFS Filesystems

XFS is a new IRIX filesystem designed for use on most Silicon Graphics systems—from
desktop systems to supercomputer systems. Its major features include

• full 64-bit file capabilities (files larger than 2 GB)

• rapid and reliable recovery after system crashes because of the use of journaling
technology

• efficient support of large, sparse files (files with “holes”)

• integrated, full-function volume manager, the XLV Volume Manager

• extremely high I/O performance that scales well on multiprocessing systems

• guaranteed-rate I/O for multimedia and data acquisition uses

• compatibility with existing applications and with NFS®

• user-specified filesystem block sizes ranging from 512 bytes up to 64 KB

• small directories and symbolic links of 156 characters or less take no space

At least 32 MB of memory is recommended for systems with XFS filesystems.

XFS supports files and filesystems of 240-1 or 1,099,511,627,775 bytes (one terabyte) on
32-bit systems (IP17, IP20, and IP22). Files up to 263-1 bytes and filesystems of unlimited
size are supported on 64-bit systems (IP19, IP21, and IP26). You can use the filesystem
interfaces supplied with the IRIS Development Option (IDO) software option to write
32-bit programs that can track 64-bit position and file size. Many programs work without
modification because sequential reads succeed even on files larger than 2 GB. NFS allows
you to export 64-bit XFS filesystems to other systems.

XFS uses database journaling technology to provide high reliability and rapid recovery.
Recovery after a system crash is completed within a few seconds, without the use of a
filesystem checker such as the fsck command. Recovery time is independent of filesystem
size.

XFS is designed to be a very high performance filesystem. Under certain conditions,
throughput exceeds 100 MB per second. Its performance scales to complement the
CHALLENGE™ MP architecture. While traditional filesystems suffer from reduced
performance as they grow in size, with XFS there is no performance penalty.

64

Chapter 3: Filesystem Concepts

You can create filesystems with block sizes ranging from 512 bytes to 64 KB. For real-time
data, the maximum extent size is 1 GB. Filesystem extents, which provide contiguous
data within a file, are configurable at file creation time using the fcntl() system call and
are multiples of the filesystem block size. Inodes are created as needed by XFS
filesystems. You can specify the size of inodes with the -i option to the filesystem creation
command, mkfs. You can also specify the maximum percentage of the space in a
filesystem that can be occupied by inodes with the mkfs -i maxpct= option.

Most filesystem commands, such as du, dvhtool, ls, mount, prtvtoc, and umount, work with
XFS filesystems as well as EFS filesystems with no user-visible changes. A few
commands, such as df, fx, and mkfs have additional features for XFS. The filesystem
commands clri, fsck, findblk, and ncheck are not used with XFS filesystems.

For backup and restore, the standard IRIX commands Backup, bru, cpio, Restore, and tar
and the optional software product NetWorker® for IRIX can be used for files less than 2
GB in size. To dump XFS filesystems, the new command xfsdump must be used instead
of dump. Restoring from these dumps is done using xfsrestore. See Table 3-1 and Table 3-2
in Chapter 3, “Dumping and Restoring XFS Filesystems,” for more information about the
relationships between xfsdump, xfsrestore, dump, and restore on XFS and EFS filesystems.

Network File Systems (NFS)

NFS filesystems are available if you are using the optional NFS software. NFS filesystems
are filesystems that are exported from one host and mounted on other hosts across a
network.

On the hosts where the filesystems reside, they are treated just like any other EFS or XFS
filesystem. The only special feature of these filesystems is that they are exported for
mounting from other workstations. Exporting NFS filesystems is done with the exportfs
command. On other hosts, these filesystems are mounted with the mount command or by
using the automount facility of NFS.

Tip: The sections “Using Disk Space on Other Systems” and “Making Your Disk Space
Available to Other Systems” in Chapter 6 of the Personal System Administration Guide
provide instructions for mounting and exporting NFS filesystems.

NFS filesystems are described in detail in the ONC3/NFS Administrator’s
Guide, which is included with the NFS software option.

Cache File Systems (CacheFS)

65

Cache File Systems (CacheFS)

The Cache File System (CacheFS) is a new filesystem type that provides client-side
caching for NFS and other filesystem types. Using CacheFS on NFS clients with local disk
space can significantly increase the number of clients a server can support and reduce the
data access time for clients using read-only file systems.

The cfsadmin command is used for managing CacheFS filesystems. A special version of
the fsck command, fsck_cachefs is used to check the integrity of a cache directory. It is
automatically invoked when a CacheFS filesystem is mounted. When mounting and
unmounting CacheFS filesystems, the -t cachefs option must be used. For more
information on these commands, see the cfsadmin(1M), fsck_cachefs(1M), and
mount(1M) reference pages.

CacheFS filesystems are available if you are using the optional NFS software. They are
described in detail in the ONC3/NFS Administrator’s Guide, which is included with the
NFS software option.

/proc Filesystem

The /proc filesystem, also known as the debug filesystem, provides an interface to
running IRIX processes for use by monitoring programs, such as ps and top, and
debuggers, such as dbx. The debug filesystem is usually mounted on /proc with a link to
/debug. To reduce confusion, /proc is not displayed when you list free space with the df
command.

The “files” of the debug filesystem are of the form /proc/nnnnn and /proc/pinfo/nnnnn,
where nnnnn is a decimal number corresponding to a process ID. These files do not
consume disk space; they are merely handles for debugging processes. /proc files cannot
be removed.

See the proc(4) reference page for more information on the debug filesystem.

66

Chapter 3: Filesystem Concepts

Filesystem Creation

To turn a disk partition or logical volume into a filesystem, the mkfs command must be
used. It takes a disk partition or logical volume and divides it up into areas for data
blocks, inodes, and free lists, and writes out the appropriate inode tables, superblocks,
and block maps. It creates the filesystem’s root directory and, for EFS filesystems only, a
lost+found directory.

An example mkfs command for making an EFS filesystem is:

mkfs -t efs /dev/rdsk/dks0d2s7

You can use the -n option to mkfs to specify the number of inodes created.

An example mkfs command for making an XFS filesystem with a 1 MB internal log
section is:

mkfs -l size=1m /dev/rdsk/dks0d2s7

An example mkfs command for making an XFS filesystem on a logical volume with log
and data subvolumes is:

mkfs /dev/rdsk/xlv/a

After using mkfs to create an EFS filesystem, run the fsck command to verify that the disk
is consistent.

For more instructions on making filesystems see Chapter 4, “Creating and Growing
Filesystems,” and the mkfs(1M), mkfs_efs(1M), and mkfs_xfs(1M) reference pages.

Filesystem Mounting and Unmounting

Filesystems must be mounted to be used. Figure 3-2 illustrates this process. When a
filesystem is mounted, the name of the device file for the filesystem (/dev/rdsk/dks0d2s7 in
Figure 3-2) and the name of a directory (/proj in Figure 3-2) are given. This directory, /proj,
is called a mount point and forms the connection between the filesystem containing the
mount point and the filesystem to be mounted. Mounting a filesystem tells the kernel
that the mount point is to be considered equivalent to the top level directory of the
filesystem when pathnames are resolved. In Figure 3-2, the files a, b, and c in the
/dev/rdsk/dks0d2s7 filesystem become /proj/a, /proj/b, and /proj/c as shown in the bottom of
the figure.

Filesystem Mounting and Unmounting

67

Figure 3-2 Mounting a Filesystem

When you mount a filesystem, the original contents of the mount point directory are
hidden and unavailable until the filesystem is unmounted. However, the mount point
directory owner and permissions are not hidden. Restricted permissions can restrict
access to the mounted filesystem.

Unlike other filesystems, the Root filesystem (/) is mounted as soon as the kernel is
running and cannot be unmounted because it is required for system operation. The Usr
filesystem, if it is a separate filesystem from the Root filesystem, must also be mounted
for the system to operate properly. System administration that requires unmounting the
Root and Usr filesystem can be done in the miniroot. See the section “Filesystem
Administration From the Miniroot” in this chapter for more information.

/(root)

/disk2/usr /proj /dev/rdsk/dks0d2s7

/b/a /c

/(root)

/disk2/usr /proj

/b/a /c

68

Chapter 3: Filesystem Concepts

You can mount filesystems several ways:

• manually with the mount command (discussed in the section “Manually Mounting
Filesystems” in Chapter 5)

• automatically when the system is booted, using information in the file /etc/fstab
(discussed in the section “Mounting Filesystems Automatically With the /etc/fstab
File” in Chapter 5)

• automatically when the filesystem is accessed (called automounting, this applies to
NFS (remote) filesystems only; see the section “Mounting a Remote Filesystem
Automatically” in Chapter 5)

You can unmount filesystems in these ways:

• shut the system down (filesystems are unmounted automatically)

• manually unmount filesystems with the umount command (see the section
“Unmounting Filesystems” in Chapter 5)

The mount and umount commands are described in detail in the section “Mounting and
Unmounting Filesystems” in Chapter 5.

Filesystem Checking

The fsck command checks EFS filesystem consistency and data integrity. Filesystems are
usually checked automatically when the system is booted. Except for the Root filesystem,
filesystems must be unmounted while being checked. You might want to invoke fsck
manually at these times:

• before making a backup

• after doing a restore

• after doing disk maintenance

• before installing software

• before manually mounting a dirty filesystem

• when fsck runs automatically and has many errors

Filesystem Reorganization

69

Several procedures for invoking fsck manually are described in the section “Checking
EFS Filesystem Consistency With fsck” in Chapter 5. A detailed explanation of the checks
performed by fsck and the options it presents when it finds problems are provided in
Appendix A, “Repairing EFS Filesystem ProblemsWith fsck.”

The xfs_check command checks XFS filesystem consistency. It is normally used only when
a filesystem consistency problem is suspected. See the xfs_check(1M) reference page for
more information.

The fsck_cachefs command checks CacheFS filesystem consistency. It is automatically run
when CacheFS filesystems are mounted. See the fsck_cachefs(1M) reference page and the
ONC3/NFS Administrator’s Guide for more information.

Filesystem Reorganization

EFS filesystems can become fragmented over time. When a filesystem is fragmented,
blocks of free space are small and files have many extents (see the section “EFS
Filesystems” in this chapter for information about extents). The fsr command reorganizes
filesystems so that the layout of the extents is improved and free disk space is coalesced.
This improves overall performance. By default, fsr is run automatically once a week from
crontab. See the fsr(1M) reference page for additional information.

Filesystem Administration From the Miniroot

When filesystem modifications or other administrative tasks require that the Root
filesystem not be mounted or not be in use, the miniroot environment provided by the
software installation tools included on IRIX system software release CDs can be used.
When using the miniroot, a limited version of IRIX is installed in the swap partition in a
filesystem mounted at /. The system runs this version of IRIX rather than the standard
IRIX in the Root and Usr filesystems. The Root and Usr filesystems are available and
mounted at /root and /root/usr. Thus the pathnames of all files in the Root and Usr
filesystems have the prefix /root.

70

Chapter 3: Filesystem Concepts

How to Add Filesystem Space

You can add filesystem space in three ways:

• Add a new disk, create a filesystem on it, and mount it as a subdirectory on an
existing filesystem.

• Change the size of the existing filesystems by removing space from one partition
and adding it to another partition on the same disk.

• Add another disk and grow an existing filesystem onto that disk with the growfs or
xfs_growfs command.

These three methods of adding filesystem space are discussed in the following
subsections.

Mount a Filesystem as a Subdirectory

To mount a filesystem as a subdirectory, you simply add a new disk with a separate
filesystem and create a new mount point for it within your filesystem. This is generally
considered the safest way to add space. For example, if your Usr filesystem is short of
space, add a new disk and mount the new filesystem on a directory called /usr/work. A
drawback of this approach is that it does not allow hard links to be created between the
original filesystem and the new filesystem.

See Chapter 2, “Performing Disk Administration Procedures,” for full information on
partitioning a disk and making filesystems on it.

“Steal” Space From Another Filesystem

To move disk space from one filesystem on a disk to another filesystem on the same disk,
you must back up your existing data on both filesystems, run the fx command to
repartition the disk, then remake both filesystems with the mkfs command. This method
has serious drawbacks. It is a great deal of work and has certain risks. For example, to
increase the size of a filesystem, you must remove space from other filesystems. You must
be sure that when you are finished changing the size of your filesystems, your old data
still fits on all the new, smaller filesystems. Also, resizing your filesystems may at best be
a stop-gap measure until you can acquire additional disk space.

Disk Quotas

71

Repartitioning is documented in “Repartitioning a Disk With fx” in Chapter 2. For
additional solutions when the filesystem is the Root filesystem, see “Running Out of
Space in the Root Filesystem” in Chapter 5.

Grow a Filesystem Onto Another Disk

Growing an existing filesystem onto an additional disk or disk partition is another way
to increase the available space in that filesystem. The original disk partition and the new
disk partition become either an lv logical volume or an XLV logical volume (your choice).
The growfs command (EFS filesystems) or xfs_growfs command (XFS filesystems)
preserves the existing data on the hard disk and adds space from the new disk partition
to the filesystem. This process is simpler than completely remaking your filesystems. The
one drawback to growing a filesystem across disks is that if one disk fails, you may not
recover data from the other disk, even if the other disk still works. If your Usr filesystem
is a logical volume, you will be unable to boot the system into multiuser mode. For this
reason, it is preferable, if possible, to mount an additional disk and filesystem as a
directory on the Root or Usr or filesystems (on / or /usr).

For instructions on growing a filesystem onto an additional disk, see the section
“Growing an EFS Filesystem Onto Another Disk” or “Growing an XFS Filesystem Onto
Another Disk” in Chapter 4.

Disk Quotas

If your system is constantly short of disk space and you cannot increase the amount of
available space, you may be forced to implement disk quotas. Quotas allow a limit to be
set on the amount of space a user can occupy, and there may be a limit on the number of
files (inodes) each user can own. IRIX provides the quotas system to automate this process
on EFS filesystems (the quotas system cannot be used on XFS filesystems). You can use
this system to implement specific disk usage quotas for each user on your system. You
may also choose to implement hard or soft limits. Hard limits are enforced by the system,
soft limits merely remind the user to trim disk usage.

72

Chapter 3: Filesystem Concepts

With soft limits, whenever a user logs in with a usage greater than the assigned soft limit,
that user is warned (by the login command). When the user exceeds the soft limit, the
timer is enabled. Any time the quota drops below the soft limits, the timer is disabled. If
the timer is enabled longer than a time period set by the administrators, the particular
limit that has been exceeded is treated as if the hard limit has been reached, and no more
resources are allocated to the user. The only way to reset this condition is to reduce usage
below the quota. Only root may set the time limits and this is done on a per-filesystem
basis.

Several options are available with the quotas subsystem. You can impose limits on some
users and not others, some filesystems and not others, and on total disk usage per user,
total number of files, or size of files. The system is completely configurable. You can also
keep track of disk usage through the process accounting system provided under IRIX.

The importance of managing disk quotas carefully cannot be over emphasized. It is
strongly recommended that if disk quotas are imposed, they should be soft quotas, and
every attempt should be made to otherwise rectify the situation before removing
someone’s files. Before using the quotas subsystem to enforce disk usage, carefully read
the material on disk quotas in the section “Disk Quotas” in this chapter.

The quotas system is described completely in the quotas(4) reference page. The procedure
for imposing disk quotas is described in the section “Imposing Disk Quotas” in
Chapter 5.

Filesystem Corruption

Most often, a filesystem is corrupted because the system experienced a panic or didn’t
shut down cleanly. This can be caused by system software failure, hardware failure, or
human error (for example, pulling the plug). Another possible source of filesystem
corruption is overlapping partitions.

There is no foolproof way to predict hardware failure. The best way to avoid hardware
failures is to conscientiously follow recommended diagnostic and maintenance
procedures.

Filesystem Corruption

73

Human error is probably the greatest single cause of filesystem corruption. To avoid
problems, follow these rules closely:

• Always shut down the system properly. Do not simply turn off power to the system.
Use a standard system shutdown tool, such as the shutdown command.

• Never remove a filesystem physically (pull out a hard disk) without first turning off
power.

• Never physically write-protect a mounted filesystem, unless it is mounted
read-only.

The best way to insure against data loss is to make regular, careful backups. See the guide
IRIX Admin: Backup, Security, and Accounting for complete information on system
backups.

